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The tantalum monohydride compound [Ta(OAr)2C12(H)(PMe2Ph)2] (OAr = 2,6-diisopropylphenoxide) will react with 
one, two or three equivalents or organic isocyanides to produce a sequence of organometallic products resulting from 
initial insertion into the Ta-H bond and subsequent coupling reactions. 

The migratory insertion of organic isocyanides into transition 
metal hydride bonds has been less extensively studied than the 
corresponding reaction with metal-alkyl compounds. 1 The 
initial products following insertion of RNC into L,M-H bonds 
have been used as models for the related hydrogenation of 
carbon monoxide. 1.2 We report here our observation concern- 
ing the insertion of organic isocyanides into a single tantalum 
hydride bond. Steric control of the substituent on the RNC 
substrate has allowed isolation of a number of intermediates in 
the subsequent oligomerization process. 

Treatment of benzene solutions of the trichloro compound 
[Ta(OAr)2C13] (OAr = 2,6-diisopropyl phenoxide)3 with one 
equivalent of Bu3SnH in the presence of PMe2Ph ( 3 2  equiv.) 
leads to the slow formation of the sparingly soluble, seven- 
coordinate mono-hydride compound 1 in 86% yield. Crystals 
of 1 will react slowly with hydrocarbon solutions or organic 
isocyanides to produce much more soluble organometallic 
products (Scheme 1). Reaction with an excess of 2,Gdiiso- 
propylphenyl isocyanide ( ArNC) generates complex 2a con- 
taining the phosphine adduct of an q2-iminoformyl ligand .4.5 

Addition of PMe3 to solutions of 2a rapidly generated the new 
adduct 3 and free PMe2Ph. 

Compound 2a does not react further with 2,Gdiisopropyl- 
phenyl isocyanides. With the less bulky reagent 2,6-dimethyl- 
phenyl isocyanide (XyNC), the monohydride 1 produces a 
product 4 in which two equivalents of isocyanide have been 
coupled to produce a five-membered diazametallacycle with 
an exocyclic phosphorus ylide function. An intermediate 
q*-iminoformyl complex 2b was detected by 1H and 31P NMR 
spectroscopy in the reaction mixture. Reaction of 1 with 
rerr-butyl isocyanide (Bu'NC) produces yet another organo- 
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metallic product 5 which contains three equivalents of Bu'NC 
and no residual phosphine. Again an intermediate q2-imino- 
formyl 2c was detected spectroscopically. 

The assignment of the *H and 13C NMR spectra of these 
new organometallic compounds was aided by the use of the 
mono-deuteride (Ta( OAr)2C12( D)(PMe2Ph)2] and are consis- 
tent with the formulations sh0wn.t Furthermore, the solid 
state structures of compounds 3 and 5 have been determined 
by single crystal X-ray diffraction analysis and ORTEP 
representations of the molecular structures are shown in Figs. 
1 and 2.4 The molecular structure of 3 (Fig. 1) is best described 
as distorted trigonal bipyramidal with the q2-C,N bound 
iminoacyl function occupying an axial site trans to a chloride 
ligand. The 0-Ta-O angle of 141.9(2)O within the equatorial 
plane is opened up presumably because of the steric bulk of 
the aryl oxide ligands. The central coordination sphere in 
compound 5 is a distorted octahedron with mutually trans 
chlorine atoms. The resonance form shown in Scheme 1 for 
the metallacycle in 5 is supported by the structural parameters. 
In particular Ta-N(2) and Ta-N(5) distances of 2.271(3) and 
2.065(3) A are consistent to the metal bonding to imine 
(simple dative bond) and amido ligands respectively. Further- 
more, it can be seen that the two chlorine atoms are bent 
towards the weaker bound imine nitrogen N(2). A similar 
distortion has been noted in a previous six-coordinate complex 
of TaV.6 

The reactivity of compounds 2 and 4 proved informative. 
Addition of ButNC to 2a was found to produce slowly a new 

? Selecred spectroscopic dara: NMR Data, C6D6. 30°C: 1 lH: 6 18.93 
( t ,  Ta-H) [Z/(JlP-lH) = 88.0 Hz]; "P: 6 7.84. 2s 1H: 6 3.22 (d, 
72-ArNCH) [*/(31P-'H) = 35.1 Hz]; 13C: 6 51.1 ($-ArNCH) 
[' /( lTJlP) = 71.1 Hz]; 3'P: 6 25.6. 2b 'H: b 3.37 (d, q'-XyNCH) 
[*/(3lP-'H) = 34.0 Hz]; 31P: 6 26.1. 2c 'H: 6 2.60 (d, $-Bu'NCH) 

[*J(3lP-lH) = 40.0 Hz]; 3lP: 6 23.4. 4 1H: 6 6.42 (HCxNXy) 
[*/(31P-'H) = 4.8 Hz]; 13C: 6 140.7 (N-C=P) ['1(13CJ'P) = 46.3 Hz], 

[z/(31P-lH) = 42.0 Hz]; 3lP: 6 22.2. 3 lH: 6 2.80 (d, +ArNCH) 

b 102.4 (N=CH) [2J(13CJ1P) = 111  Hz]; 31P: 6 3.43. 5 'H: 6 8.05 (s, 
N=CH); 13C: 6 180.1 (C=C=N), 166.7 (C=C=N), 95.6 (N=CH); 6 1H: 6 
7.95 (s, N=CH); 13C: 6 174.6 (C=C=N), 156.7 ( C G N ) ,  96.1 (N=CH). 
IR data, Nujol mull: 1 1850 cm-1 v (Ta-H). 

$ Crystal data: For 3 at 20°C: TaClzP02NCw&1, M = 870.77, space 
group Elk (No. 14), a = 10.7710(8), b = 18.281( 1). c = 21.546(2) A, 
fl = 102.771(7)", V = 4137( 1) AJ, D, = 1.398 g cm-3, Z = 4.  Of the 
5615 uni ue reflections collected (4 S 20 S 45") with Mo-Kor (k = 
0.71073 1). the 4080 with I > 30(/) were used in the final least-squares 
refinement to yield R = 0.024 and R ,  = 0.029. The unique hydrogen 
was located and refined. All other hydrogen atoms were placed in 
idealized positions. The highest peak in the final difference Fourier 
had a a height of 0.34 5 A-3. For 5 at 20°C: TaC1202N3C39H6z, M = 
856.80, space group P1 (No. 2), a = 10.0297(9), b = 12.920( l ) ,  c = 
17.043(1) A, 01 = 83.883(7), fl = 75.874(8), y = 84.246(8)". V = 
2123.1(4) A3. D, = 1.340 g cm-3, 2 = 2. Of the 5537 reflections 
collected (4 S 20 S 45") with Mo-Kor (A  = 0.71073 A), the 5017 with I 
> 30(I) were used in the final least-squares refinement to yield R = 
0.022 and R ,  = 0.029. The unique hydrogen was located and refined. 
All other hydrogen atoms were placed in idealized positions. The 
highest peak in the final difference Fourier had a height of 0.98 e A-3. 

Atomic coordinates bond lengths and angles, and thermal paramet- 
ers have been deposited at the Cambridge Crystallographic Data 
Centre. See Notice to Authors. Issue No. 1 .  
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product 6 along with free PMe2Ph. The spectroscopic data for 
6t are consistent with it being related to 5 involving the 
selective coupling of one equivalent of 2,6-diisopropylphenyl 
isocyanide with two equivalents of ButNC (Scheme 1). In 

t 

Fig. 1 ORTEP view of 3 emphasizing the central coordination sphere. 
All hydrogen atoms except one were removed for clarity. Selected 
bond distances (A) and angles (O): Ta-Cl(1) 2.468(1); Ta-Cl(2) 
2.354(1); Ta-O(30) 1.896(3); Ta-O(40) 1.894(3); Ta-N(20) 1.956(4); 
Ta-C(l0) 2.210(5); N(20)-C(10) 1.421(7); Cl(l)-Ta-C1(2) 86.33(6); 

C1(2)-Ta-0(30) 105.5(1); -0(40) 108.8(1), -N(20) 82.8(1); -C(lO) 
121.9(1); 0(30)-Ta-0(40) 141.9(2); -N(20) 100.0(2); -C(lO) 86.0(2); 
0(40)-Ta-N(20) 100.1(2); -C(lO) 89.5(2); N(20)-Ta-C(10) 39.3(2); 
Ta-O( 30)-C( 3 1) 148.7( 3) ; Ta-O( 40)-C( 41) 149.9( 3). 

-0(30) 84.1(1); -0(40) 82.2(1); -N(20) 169.0(1); <(lo) 151.7(1); 

contrast, compound 4 does not react with either PMe3 or an 
excess of ButNC. These results imply a specific reaction 
pathway for the coupling or organic isocyanides by this 
tantalum monohydride system (Scheme 2). The migratory 
insertion of the first equivalent of isocyanide produces a highly 
electrophilic q2-iminoacyl which will readily (but reversibly) 
coordinate a phosphine ligand. Addition of a second equi- 
valent of isocyanide can occur following phosphine dissocia- 
tion and must lead to the double migratory insertion interme- 
diate [A] shown (Scheme 2). Although it has precedent in 
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Fig. 2 ORTEP view of 5 emphasizing the central coordination sphere. All hydrogens except one have been removed for clarity. Selected bond 
distances (A) and angles (O): Ta-Cl(1) 2.387(1); Ta-Cl(2) 2.400(1); Ta-O(70) 1.919(2); Ta-O(80) 1.854(2); Ta-N(2) 2.271(3); Ta-N(5) 2.065(3); 
C(4)-C(41) 1.338(6); N(42)-C(41) 1.206(5); N(2)-C(3) 1.273(5); N(5)-C(4) 1.401; C(3)-C(4) 1.423(6); CI(l)-Ta-C1(2) 166.67(4); -0(70) 
93.34(8); -0(80) 94.70(9); -N(2) 79.18(9); -N(5) 90.13(9); C1(2)-Ta-0(70) 87.40(8); -0(80) 98.56(9); -N(2) 87.48(9); -N(5) 87.39(9); 
0(70)-Ta-0(80) 92.6(1); -N(2) 94.3(1); -N(5) 171.3(1); 0(80)-Ta-N(2) 171.0(1); -N(5) 95.1(1); N(2)-Ta-N(5) 78.5(1); Ta-0(70)4(71) 
158.8(2); Ta-O(SO)-C(Sl) 165.4(2). 
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carbonylation chemistry,4 formation of the keteneimine [B] 
does not occur. Reaction of [A] with PMe2Ph can occur 
irreversibly to produce a product of type 3. However, in the 
presence of an excess of a smaller, basic isocyanide such as 
ButNC, formation of a keteneimine such as 5 and 6 occurs. 
The product of these reactions cannot be rationalised on the 
basis of an intermediate [C] formed by three sequential 
migratory insertion reactions. 
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